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Compressed supersymmetry and natural neutralino dark matter

from top squark-mediated annihilation to top quarks
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The parameters of the Minimal Supersymmetric Standard Model appear to re-

quire uncomfortably precise adjustment in order to reconcile the electroweak sym-

metry breaking scale with the lower mass limits on a neutral Higgs scalar boson.

This problem can be significantly ameliorated in models with a running gluino mass

parameter that is smaller than the wino mass near the scale of unification of gauge

couplings. A “compressed” superpartner mass spectrum results; compared to mod-

els with unified gaugino masses, the ratios of the squark and gluino masses to the

lightest superpartner mass are reduced. I argue that in this scenario the annihilation

of bino-like neutralino pairs to top-antitop quark pairs through top squark exchange

can most naturally play the crucial role in ensuring that the thermal relic dark mat-

ter density is not too large, with only a small role played by coannihilations. The

lightest superpartner mass must then exceed the top quark mass, and the lighter top

squark cannot decay to a top quark. These conditions have important implications

for collider searches.
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I. INTRODUCTION

Softly-broken supersymmetry is a leading candidate to explain the hierarchy of the Planck

mass scale and other high-energy scales to the electroweak symmetry breaking mass scale [1]. In

extensions of the Standard Model with a fundamental Higgs scalar, obtaining this hierarchy would

seem to require tuning of the Higgs squared mass parameter to about one part in 1032. The Minimal

Supersymmetric Standard Model (MSSM) [2] solves this problem by introducing superpartners with

masses near the electroweak scale. In addition, with the assumption of R-parity conservation, the

most dangerous (renormalizable) contributions to proton decay are eliminated, and the lightest

supersymmetric particle (LSP) can serve [3]-[7] as the cold dark matter required by cosmology

[8]-[10].

However, the fact that the CERN LEP e+e− collider did not discover a Standard Model-like

light neutral Higgs scalar boson, placing a limit Mh0 > 114 GeV [11], has put some tension on

the allowed parameter space in the MSSM. This is because Mh0 is bounded above at tree level by

mZ , and radiative corrections depend on the superpartner masses, which we assume cannot be too

large without reintroducing the hierarchy problem. Including the largest radiative corrections at

one-loop order† gives:

M2
h0 = m2

Z cos2(2β) +
3

4π2
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t

[
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)
}

/m2
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]
. (1.1)

where ct̃ and st̃ are the cosine and sine of a top-squark mixing angle, mt̃1,2
are the top-squark mass

eigenvalues, yt and mt are the top-quark Yukawa coupling and mass, and tan β = vu/vd is the ratio

of Higgs vacuum expectation values, and for simplicity the Higgs sector is treated in a decoupling

approximation with h0 much lighter than the other Higgs bosons A0,H0,H±. (In this paper, I

follow the notations and conventions of [2].) In order to evade the LEP bound, it is clearly helpful

to have mt as large as possible, but the experimental central value [12] has fallen recently. It is

also required that tan β is not too small. For fixed values of the superpartner masses, it follows

that an upper bound within the approximation of eq. (1.1) is

M2
h0 < m2

Z cos2(2β) +
3

4π2
sin2β y2

t m
2
t

[
ln(m2

t̃2
/m2

t ) + 3
]

(1.2)

in the case that the top-squark mixing is adjusted to have the maximum positive impact on Mh0.

In specific model frameworks without carefully adjusted top-squark mixing it is typically found

that this bound is not close to saturated, so while a non-zero top-squark mixing is quite useful

for satisfying the LEP bounds for a Standard Model-like lightest Higgs scalar, it is also usually

necessary for m2
t̃2

/m2
t to be fairly large.

This is to be contrasted with the condition for electroweak symmetry breaking, which for tan β

† This approximation is subject to significant further corrections, which are not necessary for the present argument.
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not too small takes the form:

m2
Z = −2

(
|µ|2 + m2

Hu

)
− 1

vu

∂

∂vu
∆V + O(1/ tan2β). (1.3)

Here ∆V is the radiative part of the effective potential with vu treated as a real variable in the

differentiation, µ is the supersymmetry-preserving Higgs mass parameter, and m2
Hu

is the soft

supersymmetry breaking mass term for the Higgs field that couples to the top quark, which must

be negative near the electroweak scale. The “supersymmetric little hierarchy problem” is that if

supersymmetry breaking parameters are large enough to make Mh0 exceed the LEP bounds, then

a tuning at the several percent-level (or worse) might seem to be needed in eq. (1.3), so that |µ|2
and −m2

Hu
nearly cancel. It has been argued that the level of fine tuning required can be quantified

with various measures, but it is my view that any such metrics are inherently and unavoidably

subjective, so they will not be used here. Although the little hierarchy problem does not admit of

rigorous judgments, it can and does cause discomfort and doubt regarding the likelihood of finding

supersymmetric particles in present and future collider searches.

There is no sense in which |µ| is naturally large, in fact it could naturally be 0 even in the

presence of arbitrary supersymmetry breaking if it were not for experimental constraints. The

radiative effective potential contribution to eq. (1.3) is not negligible, but since it is loop-suppressed,

it does not imply a drastic fine tuning. Therefore, the supersymmetric little hierarchy problem,

if indeed there is one, is implied by the fact that |m2
Hu

| might be expected to be much larger

than m2
Z in models with heavy top squarks. This indeed occurs in popular models with few

parameters with universal soft supersymmetry breaking terms imposed near the scale of apparent

gauge coupling unification (the GUT scale), hereafter referred to as mSUGRA. However, it has long

been appreciated that this connection is modified or lost in more general models of supersymmetry

breaking. In section II, I will review the arguments that suggest that the little hierarchy problem

is ameliorated in particular by models that predict a smaller gluino mass than in unified models.

A further source of tension on the parameter of the MSSM is provided by the opportunity of the

explaining the cold dark matter by the thermal relic density of a neutralino LSP (Ñ1). Roughly,

the annihilation rate for neutralinos decreases with increasing supersymmetry breaking masses in

the absence of special mechanisms dependent on particular mass ratios. If the LSP is bino-like, as

predicted by many mSUGRA models, then the predicted thermal relic abundance is often found

to be too high‡ compared to the results of WMAP and other experiments [8]-[10]. The exceptional

possibilities have lately been classified qualitatively in four main categories, depending on the

mechanism most responsible for reducing the predicted dark matter density to an acceptable level.

First, in the “bulk region” of parameter space, there is a relatively light neutralino LSP, which

pair annihilates by the t-channel and u-channel exchange of sleptons. However, in mSUGRA and

similar models, this bulk region often predicts that Mh0 is too small, or that other states should

have been detected at LEP or the Fermilab Tevatron pp collider, or gives trouble with other indirect

constraints.

‡ It is also important that the dark matter need not be neutralinos with a thermal relic density. The LSP might
be a gravitino or axino, or something else. Or, if the predicted thermal relic abundance of neutralino dark matter
is too low or too high, it can be enhanced or diluted by some non-thermal effect; see for example [13]. However,
models that can explain the dark matter without multiplying hypotheses should be accorded special interest.
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Second, in the Higgs resonance (or funnel) region, neutralino pairs annihilate through the s-

channel exchange of the pseudo-scalar Higgs boson A0 in an s-wave final state. Because the relevant

coupling is proportional to mb tan β, this usually entails large values of tan β [4]. (There is also the

possibility of annihilating near the h0 pole [14].)

Third, there is the possibility that the LSP has a significant higgsino component, allowing larger

neutralino pair annihilation and co-annihilation with the heavier neutralinos and charginos, to and

through weak bosons [15]. This occurs for example in the “focus point” region of parameter space,

in which |µ| is not too large, even if the sfermions are very heavy [16].

A fourth possibility, the “sfermion co-annihilation region” of parameter space [17], is obtained

if there is a sfermion (typically a tau slepton [18] in mSUGRA, but possibly a top squark [19]-[23])

that happens to be slightly heavier than the LSP. A significant density of this sfermion will then

coexist with the LSP around the freeze-out time, and so annihilations involving the sfermion with

itself or with the LSP will further dilute the number of superpartners and so the eventual dark

matter density. The co-annihilation region generally requires just the right mass difference between

the stau or stop quark and the LSP, and so is often considered to be fine tuned.

If the LSP is mostly higgsino or wino, then the annihilation of superpartners in the early universe

is typically too efficient to provide for thermal relic density in agreement with WMAP. However,

one can always adjust the higgsino or wino contents of Ñ1 to be just right, at the expense of some

fine tuning. In recent years, there have been many studies of the properties of neutralino dark

matter that follow from abandoning the strict boundary conditions of mSUGRA models to allow

non-universal gaugino masses [24]-[39] or scalar masses [40]-[46] at the GUT scale. By increasing

the wino or higgsino content of the neutralino, one can increase the cross-section for annihilations

and co-annihilations to weak bosons, and those mediated by the Z boson and h0 and A0 in the

s-channel.

In section III of this paper, I will study a different possibility with rather distinctive properties,

namely the possibility that the LSP is mostly bino-like, but pair annihilates efficiently to top-antitop

quark pairs due predominantly to the exchange of light top squarks. In the models discussed in

section II (unlike in mSUGRA and similar models) this mechanism turns out to give a thermal

relic dark matter density in agreement with the WMAP measurements for a wide range of input

parameters, much more than in the stop co-annihilation (or stau co-annihilation) regions to which

it is continuously connected. This scenario also has important implications for collider searches at

the Fermilab Tevatron, CERN Large Hadron Collider (LHC), and a future linear collider, discussed

briefly in section IV. Section V contains some concluding remarks.

II. COMPRESSED SUPERSYMMETRY

In this section, I review the argument that a suppression of the gluino mass parameter amelio-

rates the little hierarchy problem in supersymmetry. (This has been observed in various papers; a

particularly clear and early explanation was given in ref. [47].)

As noted in the Introduction, the issue is essentially to explain why the running parameter

−m2
Hu

should be small and positive near the electroweak scale, in the same theory that allows

large positive corrections to M2
h0. The parameter |µ|2, which relies on a different sector of the

theory, can then be chosen without too much fine tuning to give the right m2
Z in eq. (1.3). In terms



5

of the MSSM soft supersymmetry breaking parameters at the apparent GUT scale, one finds:

− m2
Hu

= 1.92M̂2
3 + 0.16M̂2M̂3 − 0.21M̂2

2 − 0.33M̂3Ât − 0.074M̂2Ât + 0.11Â2
t

+0.024M̂1M̂3 + 0.006M̂1M̂2 − 0.006M̂2
1 − 0.012M̂1Ât + 0.002M̂3Âb

−0.63m̂2
Hu

+ 0.36m̂2
Q3

+ 0.28m̂2
u3

− 0.027m̂2
Hd

+ 0.025m̂2
d3

− 0.026m̂2
L3

+0.026m̂2
e3

+ 0.05m̂2
Q1

− 0.11m̂2
u1

+ 0.05m̂2
d1

− 0.05m̂2
L1

+ 0.05m̂2
e1

(2.1)

Here, the hats on the parameters on the right-hand side denote that they are inputs at the apparent

GUT scale, while m2
Hu

on the left-hand side denotes the result at the renormalization scale Q = 400

GeV (where the corrections due to the effective potential are presumed moderate), using tan β = 10

and the SPS1a′ benchmark point [48] values for the Yukawa and gauge couplings and unification

scale, and using two-loop renormalization group equations [49]. The input parameters consist of

independent gaugino masses M̂1, M̂2, M̂3, scalar trilinear coupling parameters Ât, Âb, Âτ , and

scalar squared masses for the Higgs bosons, third family sfermions, and first family sfermions

(with each second family sfermion assumed degenerate with the first family counterpart having

the same quantum numbers). Some contributions with very small coefficients have been omitted

from eq. (2.1). The reason for applying boundary conditions at the GUT mass is that the apparent

unification of couplings provides some justification that it is meaningful to extrapolate running

parameters up to that scale.

In the so-called mSUGRA framework, the input parameters are usually taken to obey the much

stronger conditions:

M̂1 = M̂2 = M̂3 = m1/2, (2.2)

Ât = Âb = Âτ = A0, (2.3)

m̂2
φ = m2

0 (2.4)

for all scalars φ = Hu,Hd, Qi, ui, di, Li, ei, with family index i = 1, 2, 3. It is then clear that the

largest contribution to −m2
Hu

at the weak scale is due to the input gluino mass M̂3; furthermore,

there is a significant cancellation between the scalar contributions within the mSUGRA framework.

Generalizing the input parameters can provide a relative reduction in −m2
Hu

, therefore lowering

both the predicted value of |µ|2 and the cancellation needed to obtain the observed value of mZ .

From consideration of the first five terms on the right-hand side, one learns that small values of

|µ| result from (roughly) M̂3 ≈ 0.29M̂2 + 0.13Ât or M̂3 ≈ −0.38M̂2 + 0.04Ât, provided that M̂1,

Ât, m̂2
Hu

etc. are not too large. A complete cancellation is actually not desirable from our present

point of view, since a mostly higgsino-like neutralino has too small a thermal relic density, and

Mh0 often comes out too small. There are many types of models already in the literature that can

predict a small ratio of M̂3/M̂2. The scenario for dark matter to be studied in the next section

does not depend crucially on which framework is used, but for concreteness I will review one here.

In the usual mSUGRA framework, one assumes that the gaugino masses are all the same; in

SU(5) GUT language this corresponds to a supersymmetry breaking F -term in a singlet of SU(5)

[or SO(10)]. More generally, one can consider non-universal gaugino masses arising from an F term

VEV in arbitrary linear combinations of the symmetric product of two adjoint representations of
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the GUT group that contain a Standard Model singlet [50]-[53]. For SU(5):

(24 × 24)S = 1 + 24 + 75 + 200. (2.5)

The resulting gaugino mass terms have the form

L = −
∑

R

〈FR〉
2MP

∑

n

c
(n)
R λnλn + c.c. (2.6)

where the coefficients c
(n)
R (with n = 1, 2, 3 for bino, wino, and gluino respectively, and R =

1 + 24 + 75 + 200) are determined by group theory, leading to the parameterization:

M̂1 = m1/2(1 + C24 + 5C75 + 10C200), (2.7)

M̂2 = m1/2(1 + 3C24 − 3C75 + 2C200), (2.8)

M̂3 = m1/2(1 − 2C24 − C75 + C200). (2.9)

The special case C24 = C75 = C200 recovers the mSUGRA model. In eqs. (2.7)-(2.9), I have

assumed that there is at least some SU(5) singlet component to the F term, although this is not

strictly necessary. Note that this parameterization is already general enough to fit any observed

gaugino mass hierarchy, simply because it contains three linearly independent contributions.

One particularly simple way to achieve a ratio M̂3/M̂2 ∼ 1/3 is to choose C24 ∼ 0.22, with

C75 = C200 = 0. This is the inspiration for the model space studied in the next section, although

it cannot be overemphasized that there are many other reasonable ways to achieve such a ratio.

One point in favor of this type of model is that in GUT theories like SU(5), there is a chiral

superfield in the 24 (adjoint) representation anyway; once the scalar component acquires a VEV,

it is actually unnatural for the F term to not develop a VEV as well. Moreover, this can make

the theory consistent with proton decay requirements and help to obtain precise gauge coupling

unification [54, 55].

As evidenced by the special case of eq. (2.1), soft supersymmetry breaking mass parameters at

the weak scale are substantially driven by the gaugino mass parameters through large logarithmic

effects that are summarized in the renormalization group. In mSUGRA models, this effect typi-

cally causes squarks and the gluino to be much heavier than the superpartners that do not have

SU(3)C interactions, except when m0 is very large. In the case of a small ratio M̂3/M̂2 motivated

by a solution to the little hierarchy problem, however, the resulting mass spectrum will be “com-

pressed” in comparison to mSUGRA, with a smaller ratio of the masses of the heaviest and lightest

superpartners. Two aspects of this that will be important in the next section are that it becomes

much more likely that the lighter top squark can be the next-to-lightest supersymmetric particle

(NLSP), and that the LSP is rather heavy.

It will be assumed here that the trilinear scalar couplings are sizable and negative at the GUT

scale (in the convention of [2]). This can be motivated as the effect of strong renormalization

group running between the GUT scale and the Planck scale, which would produce both negative

scalar trilinear couplings and positive scalar squared masses, and often prefers positive µ [56]

(independently of low-energy (g−2)µ or b → sγ considerations), when the running is dominated by
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positive gaugino masses. It is worth noting that in many viable supersymmetric GUT theories, the

naive running of the gauge couplings above the unification scale quickly becomes non-perturbative.

For example, in the minimal missing partner supersymmetric SU(5) theory [57], the two-loop

gauge beta function has a Landau pole, and the three- and four-loop beta functions appear to

have strongly-coupled UV-stable fixed points [58]. While the breakdown of perturbation theory

renders such calculations untrustworthy in detail, this suggests that gaugino mass dominance could

eliminate the problem of supersymmetric flavor-violation, while giving essentially arbitrary flavor-

preserving soft supersymmetry breaking terms at the GUT scale. As a simplistic assumption made

only for convenience, the scalar trilinear couplings Ât, Âb, Âτ will be taken to be unified in the

models below; the parameter Ât has the most direct importance in most cases.

Likewise I will assume, as a matter of convenience, that at the GUT scale all scalars have a

common squared mass m2
0 as in mSUGRA. While it is clearly worthwhile to consider scalar mass

non-universality at the GUT scale, I expect that the results obtained here will be realized at least

qualitatively in a variety of different schemes without universal scalar squared masses imposed at

the GUT scale.

III. DARK MATTER DENSITY AND PAIR ANNIHILATION TO TOP QUARKS

In order to explain a large value of Mh0 in models of compressed supersymmetry, it is favored

that the mass spectrum is compressed up, rather than down. This means that the LSP will have

to be heavier than usually found in the mSUGRA “bulk” region for dark matter.

It has been suggested in models of this type with small |M3/M2| that the thermal relic abundance

of dark matter can be explained by an enhanced Higgsino component of Ñ1, leading to enhanced

annihilations Ñ1Ñ1 → W+W− or ZZ [28, 35], or by s-channel annihilation through the pseudo-

scalar Higgs A0 near resonance [28, 31, 33], or by co-annihilations with heavier neutralinos and

charginos [31, 35], or by s-channel annihilations to tt through the Z boson [28, 33].

In this paper, I will consider instead the case that the thermal relic density is suppressed

primarily by Ñ1 pair annihilation to top quark-antiquark pairs, mediated mostly by top-squark

exchange. As mentioned in the previous section, it is not difficult in compressed supersymmetric

models to obtain a top squark NLSP. This is in contradistinction to mSUGRA and similar models,

where achieving the required suppression in ΩDMh2 from top-squark exchange requires that |A0| is

very large in absolute terms and must be rather finely adjusted so that t̃1 is not much heavier than

Ñ1 (see for example refs. [20, 21, 23]). In the points in mSUGRA parameter space where this can

occur, t̃1t̃1 and Ñ1t̃1 co-annihilations are also generally very important (unlike here). Compressed

supersymmetry models with small† |M3/M2| at the GUT scale have the crucial distinction that

achieving comparable mt̃1
and mÑ1

is much easier, and requires smaller values of |At| in absolute

terms, and admits a wider range of At.

The tree-level Feynman diagrams that contribute to the process Ñ1Ñ1 → tt are shown in

Figure 1. In order to obtain ΩDMh2 compatible with WMAP by this mechanism (without undue

† Hats will be omitted from GUT scale input parameters throughout this section.
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Ñ1
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t̃1,2

t
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t

t

Ñ1
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t

t̄

FIG. 1: Contributions to the annihilation of neutralino dark matter LSP pairs into top quark-antiquark
pairs, from top squark, Z boson, and Higgs boson exchange.

fine tuning), it is necessary that:

mt < mÑ1 ∼< mt + 100 GeV, (3.1)

mÑ1
+ 25 GeV ∼< mt̃1 ∼< mÑ1

+ 100 GeV. (3.2)

The first inequality in eq. (3.2) is the approximate requirement that the relic density not be sup-

pressed too much by top-squark co-annihilations. The upper bounds here are also necessarily fuzzy,

because of the connection to the thin co-annihilation region. For models satisfying these criteria,

the top-squark exchange is most important for bino-like Ñ1 and t̃1 with a high t̃R component. As

one increases the small Higgsino component of Ñ1 (by lowering |µ|), the contribution from the

t̃1 exchange diagrams becomes enhanced, due to the top Yukawa coupling. In the models to be

considered below, the s-channel Z exchange diagram is subdominant but not negligible; using the

analytic formulas provided in [4], one can show that the most important effect is a significant

destructive interference with the dominant top-squark exchange diagram amplitude.

For a more detailed study, I have used the program micrOMEGAs 2.0.1 [6] to evaluate the

thermal relic abundance of dark matter for supersymmetric models generated using SOFTSUSY

2.0.11 [59] (and checked for approximate agreement with SuSpect [60]). In the following, I

consider a rather conservative thermal relic density constraint:

0.09 < ΩDMh2 < 0.13, (3.3)

and impose a Higgs mass constraint:

Mh0 > 113 GeV. (3.4)

This is slightly lower than the LEP bound for Standard Model-like Higgs scalars, justified by the

significant uncertainties involved in the theoretical Higgs mass calculation. In addition, I adopt

the slightly optimistic value of mt = 175 GeV rather than the somewhat lower latest combined

central value mt = 171.4 ± 1.8 (syst.) ± 1.2 (stat.) GeV from the Tevatron [12]. In each model,

I require that the LSP is a neutralino. Then all limits on supersymmetric particles from LEP
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turn out to be automatically satisfied. No constraint from the anomalous magnetic moment of

the muon is applied, since for all models considered here, the predicted value is actually closer to

the experimental central value(s) from the BNL E821 experiment [61] than the Standard Model

prediction is (but not by a very statistically significant amount). I do not impose any bound coming

from b → sγ, since the measurement can be easily accommodated [62] by introducing some extra

small GUT-scale flavor violation in the supersymmetry-breaking parameters, in a way that would

not affect the rest of the model in any appreciable way.

Results for a typical two-parameter model space are shown in Figure 2. Here I consider models

with boundary conditions at the GUT scale:

1.5M1 = M2 = 3M3, (3.5)

with M1 and m0 allowed to vary independently, tanβ = 10 and µ > 0, and two values for the

ratio A0/M1 = −0.75 (outlined region) and A0/M1 = −1 (shaded region). The allowed regions are

cut off on the lower left by the Higgs mass bound constraint eq. (3.4). The upward bulges in the

regions are the places where top-squark exchange plays the dominant role in Ñ1Ñ1 → tt, which in

turn is the most important annihilation process for the dark matter. Typically, in the bulge regions

Ñ1Ñ1 → tt accounts for 70% to 90% of the contributions to 1/ΩDMh2. Each of these regions is

continuously connected to much narrower co-annihilation regions on either side. For A0/M1 = −1,

stop co-annihilation is the dominant effect in these thin strips, but for A0/M1 = −0.75, stau

co-annihilations are also important there.

For smaller values of −A0/M1, not shown here, the Ñ1Ñ1 → tt bulge region still exists, but

continuously connects instead to a thin stau co-annihilation strip.

As can be seen from Figure 2, the smaller −A0 case requires a larger mass difference mt̃1
−mÑ1

in the allowed bulge region. This can be traced to the fact that µ decreases as −A0 decreases

[see eqs. (1.3) and (2.1)], slightly enhancing the small Higgsino component of the LSP, which

substantially increases the top-squark exchange amplitude contributions to the annihilation cross

section as mentioned above.

The s-channel Higgs scalar annihilation diagrams shown in Figure 1 play only a small role in the

LSP pair annihilation in these models. This is because in all cases mÑ1
is well below the resonance

point mA0/2 ≈ mH0/2, and well above the resonance point mh0/2.

Also shown in Figure 2 are the critical lines that govern the decay of t̃1. The lowest dashed

line indicates the region allowed by the requirement that Ñ1 is the LSP. In all cases, the decay

t̃1 → tÑ1 is kinematically closed, as indicated by the upper dashed line. Above the middle dashed

line, the decay

t̃1 → WbÑ1 (3.6)

is kinematically open, and should dominate. Below that line, the flavor-violating 2-body decay

t̃1 → cÑ1 (3.7)

is expected to win [63] over the four-body decays t̃1 → qq′bÑ1 and t̃1 → ℓνbÑ1. The charginos (C̃i)

and sleptons are heavier in the models shown, so they cannot appear in t̃1 decays.
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FIG. 2: Allowed regions in the mÑ1
, mt̃1

plane that predict a thermal relic abundance of neutralino LSP dark

matter 0.09 < ΩDMh2 < 0.13 and satisfy other constraints given in the text. The GUT-scale parameters
satisfy 1.5M1 = M2 = 3M3, with variable m0, and A0 = −0.75M1 (region outlined in black) and A0 = −M1

(shaded region). Also, tanβ = 10 and µ > 0. The lowest dashed line is mt̃1
= mÑ1

. Below the upper dashed

line, the decay t̃1 → tÑ1 is forbidden. Below the middle dashed line, the three-body decay t̃1 → WbÑ1 is
also forbidden.
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FIG. 3: The allowed regions depicted in Figure 1 arise from the values of m0 shown here.



11

200 300 400 500
M3  [GeV] at GUT scale

0

100

200

300

400

500

600
m

0  [
G

eV
]

A0 = -375 GeV
A0 = -500 GeV

00.10.2

c24

0

100

200

300

400

500

600
m

0  [
G

eV
]

FIG. 4: Allowed regions that predict a thermal relic abundance of neutralino LSP dark matter 0.09 <
ΩDMh2 < 0.13 and satisfy other constraints given in the text. At the GUT scale, the bino mass parameter
M1 = 500 GeV is fixed, and the wino and gluino mass parameters vary while obeying eqs. (2.7)-(2.9) with
C75 = C200 = 0. The horizontal direction is parameterized by M3 at the GUT scale (lower horizontal axis)
or equivalently by C24 (upper horizontal axis). The vertical axis is the common scalar mass m0. The region
outlined in black has A0 = −375 GeV and the shaded region has A0 = −500 GeV, with tanβ = 10 and
µ > 0 in each case. The very thin, nearly horizontal regions with m0 near 110 GeV feature co-annihilation
of sleptons and the LSP. In the thicker sloping areas on the left, the dominant contribution to 1/ΩDMh2 is
Ñ1Ñ1 → tt, mostly due to the t̃1 exchange diagram amplitudes.

The relative thickness of the allowed regions cannot be regarded as a direct measure of fine-

tuning, even subjectively. In fact, a perfectly accurate determination of ΩDMh2 would make the

allowed regions arbitrarily thin, up to model assumption and theoretical errors and input parameter

uncertainties.‡ (The Planck satellite mission experiment [64] should indeed significantly improve

the determination.) However, it seems clear that the observed dark matter density is more naturally

accommodated in the Ñ1Ñ1 → tt bulge regions, since a larger range of m0 values (for each fixed

M1) lie within the range specified by eq. (3.3). This is illustrated for the same models in Figure 3.

Notably, all of the soft supersymmetry breaking parameters are less than the gaugino masses M1

and M2; this includes the holomorphic term b = Bµ, which is of order (250 GeV)2 in the bulge

region of these models.

Another handle on the Ñ1Ñ1 → tt annihilation scenario is provided by Figure 4, which shows

dark matter allowed regions in the plane of m0 vs. M3, for models with fixed M1 = 500 GeV at the

‡ Moreover, one could regard the entire parameter space between the indicated regions and the mt̃1
= mÑ1

line as
allowed, in the sense that the thermal relic abundance would be less than or equal to the observed value. Then
something else, for example axions, would make up the remaining dark matter.
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FIG. 5: A typical sample “compressed” Higgs and superpartner mass spectrum with ΩDMh2 = 0.11
brought about by Ñ1Ñ1 → tt through t̃1 exchange. The GUT scale parameters of the model are
M1,2,3 = 500, 750, 250, A0 = −500, and m0 = 342 GeV, with tanβ = 10 and µ > 0 at the weak scale.
The ratio of the largest superpartner mass to the smallest is less than 4. An unfortunate feature, quite
common to this scenario for dark matter, is that no visible superpartners would be within reach of a linear
collider with

√
s = 500 GeV.

GUT scale (so that the LSP mass is approximately 200 GeV) and obeying the boundary condition

of eqs. (2.7)-(2.9) with C24 varying and C75 = C200 = 0. I again require µ > 0 and tan β = 10,

and the allowed regions are shown for A0 = −M1 and A0 = −0.75M1. The thin horizontal regions

achieve the observed dark matter density by co-annihilations of sleptons and the LSP; as is well-

known, this requires a rather precise adjustment of the slepton squared masses. For C24 ∼> 0.19,

or equivalently M3 ∼< 260 GeV, the Ñ1Ñ1 → tt annihilation scenario takes over, leading to the

thicker, sloping allowed regions. They are cut off on the left by the imposed Higgs mass constraint

eq. (3.4).

The distinctive features of the Ñ1Ñ1 → tt annihilation scenario for dark matter in compressed

supersymmetry are illustrated in the superpartner spectrum for a typical model point shown in

Figure 5, with M1 = 500 GeV and m0 = 342 GeV in order to give ΩDMh2 = 0.11. In this

model, Ñ1Ñ1 → tt contributes about 89% to 1/ΩDMh2. The amplitude from t̃1 exchange is

largest, with an amplitude from Z exchange about 0.3 times as big in the velocity-independent

part of the 1S0 channel, with destructive interference. The superpartner mass spectrum shows

compression compared to mSUGRA models, with the ratio of masses of the largest superpartners

(nearly degenerate ũL, c̃L and d̃L, s̃L) to the LSP being less than 4, with all superpartners between

200 GeV and 800 GeV. The NSLP is t̃1. The lightest chargino C̃1 and the neutralinos Ñ2 and Ñ3

are higgsino-like; this is a consequence of µ being not too large as discussed in section II. Another

consequence of the choice of a relatively large wino mass to ameliorate the little hierarchy problem

is that the wino-like states Ñ4 and C̃2 are comparatively heavy, just below the gluino mass, and

there is a wide split between left-handed squarks and sleptons and their right-handed counterparts.
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IV. IMPLICATIONS FOR COLLIDERS

In this section I will make some brief remarks on the implications of the scenario outlined above

for collider searches. Figure 5 shows a typical model of this type, with the characteristic feature

that the decay t̃1 → cÑ1 has a 100% branching fraction. For this section, I will use this as a

benchmark, with the important caveat that search strategies will be qualitatively different if the

decay t̃1 → WbÑ1 is open. Other notable decays, with approximate branching fractions computed

by ISAJET 7.74 [65], are:

g̃ →
{

t t̃∗1 (∼ 50%)

t t̃1 (∼ 50%)
(4.1)

for the gluino, and

Ñ2 →
{

Ñ1h (∼ 90%)

Ñ1Z (∼ 10%)
(4.2)

Ñ3 → Ñ1Z (∼ 97%) (4.3)

C̃1 → t̃1b (∼ 95%) (4.4)

for the Higgsino-like neutralinos and charginos. The wino-like neutralino and chargino Ñ4 and

C̃2 are so heavy in this class of models that they are unlikely to be directly produced in great

numbers at any foreseeable colliders, but may appear (with small branching fractions) in decays

of left-handed squarks. This scarcity of winos is different from the expectation in many mSUGRA

models, for example. The left-handed squarks of the first two families decay predominantly through

the gluino, while the right-handed squarks decay mostly directly to the LSP:

q̃L →
{

qg̃ (∼ 78%)

q′C̃2 (∼ 11%)
(4.5)

q̃R → qÑ1 (∼ 90%) (4.6)

However, the latter large branching fraction is due here to the very small phase space allowed for

decays to the gluino, so while it is a real possibility, it cannot be considered a robust prediction

for this class of models in general.

The sleptons decay mostly directly to the bino-like LSP Ñ1. Unfortunately, they almost com-

pletely decouple from the other superpartner decay chains, so they must be produced directly to

be observed. This is clearly a challenge, given their large masses.

Because of the large masses of the entire superpartner spectrum, it will be difficult to probe the

scenario outlined here at the Tevatron. The process

pp → t̃1t̃
∗
1 → ccÑ1Ñ1 → c c + /ET (4.7)
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is one of the searches being actively pursued by both the D∅ [66] and CDF [67] collaborations,

using heavy flavor tags. However, the sensitivity appears to be well short [68] of that needed to

probe most of the region favored by neutralino annihilations to top quarks as the solution for dark

matter. The same process without the heavy flavor tag requirement, pp → (acoplanar jj) +/ET

[69], may also be interesting. However, in the present case the jets will not have a particularly

high transverse momentum compared to the typical situation in mSUGRA benchmark models.

The clean trilepton and /ET signal from wino-like C̃1Ñ2 production that is found in mSUGRA is

unavailable here. The other superpartners generally are too heavy to be produced in sufficient

numbers at the Tevatron with the anticipated integrated luminosity. The Higgs sector consists

of a Standard-Model like Higgs boson h0 and a heavy isotriplet of Higgs bosons (H0, A0,H±), so

enhanced signals are not expected there.

At the Large Hadron Collider, squark and gluino production will dominate as usual. The latter

leads to the signal of two tops and two charm jets, but with 50% probability for like-sign tops,

because of the Majorana nature of the gluino decays:

pp → g̃g̃ →





t t t̃1 t̃∗1 → t t c c + /ET (50%)

t t t̃∗1 t̃∗1 → t t c c + /ET (25%)

t t t̃1 t̃1 → t t c c + /ET (25%)

(4.8)

This LHC signal has been studied in [70] using the like-charge lepton signal arising from the leptonic

decay modes for both top quarks, with the result that both discovery and mass measurements are

possible up to a gluino mass of about 900 GeV. The assumptions in the benchmark models used

in that paper included a neutralino and stop that were both relatively lighter than in the scenario

discussed in the present paper, but the results seem likely to be qualitatively the same.

Since many of the squarks produced at the LHC will decay through gluinos and then into top

squarks and top quarks by eqs. (4.1), one expects also the same signal as in eq. (4.8) with two extra

(usually light-flavor) jets, some of which may however be relatively soft. Other squark-squark and

gluino-squark events will yield the typical jets plus leptons plus /ET signatures.

For models like the one in Figure 5, sleptons will not appear with significant multiplicity in the

decays of the squarks and sleptons that are produced directly at the highest rates at the LHC.

For these masses, the direct production of sleptons would also be very difficult to observe in either

Drell-Yan production [71] or vector boson fusion [72].

If the decay mode t̃1 → WbÑ1 is open, as can occur for models with lower |A0| and/or higher

ΩDMh2, then a different like-charge lepton signal results from pp → g̃g̃ → t tb b ℓ−ℓ− + /ET and

t t b b ℓ+ℓ+ + /ET at the LHC. The resulting events with four potential b tags, like-charge dileptons,

and large missing energy should provide for a striking signal.

Finally, it is important to note that the scenario for neutralino LSP annihilation to a top quark

does not present a particularly promising situation for a linear collider with
√

s = 500 GeV. In

the model shown in Figure 5, and in a great deal of the allowed parameter space in Figure 2, the

only supersymmetric particle that can be produced at such a machine is Ñ1, which does not lead

to a visible signal (except possibly through initial state radiation e+e− → Ñ1Ñ1γ [73]). With that

collision energy, only an h0 with properties nearly indistinguishable from a Standard Model Higgs

boson will be in direct evidence. Fortunately, if this is the course that Nature has chosen, the
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LHC should be able to identify the problem in advance, and allow for informed decisions regarding

required beam energy. However, the difficulty in seeing sleptons at the LHC as noted above will

present, as it does in many models, a challenge for assessing the capabilities of a linear collider.

V. OUTLOOK

In this paper, I have argued that there is a particularly appealing region of parameter space in

which the right amount of dark matter can be obtained naturally, in the sense that ΩDMh2 varies

rather slowly with changes in the input parameters. The key feature is suppression of ΩDMh2 due

primarily to neutralino pair annihilation to top quarks through top squark exchange, which can

occur with moderate top-squark mixing in models that have a relatively light gluino compared

to the predictions of models with universal gaugino mass boundary conditions as in mSUGRA.

The resulting superpartner spectrum can therefore be described as compressed, and leads to rather

distinctive predictions. The fact that the Ñ1 mass has to exceed the top quark mass in this scenario

for dark matter makes the discovery of supersymmetry impossible† at the past CERN LEP e+e−

collider, very difficult for the ongoing Tevatron, but quite promising for the LHC. Since the t̃1
squark has to be still heavier by tens of GeV, there is considerable doubt that a linear collider

would be able to see it, or any other superpartners, unless the center-of-mass energy is higher than√
s = 500 GeV.

In this paper, I have not attempted any detailed study of LHC potential for discovery or

precision measurements, or of the possibilities for direct or indirect detection of the dark matter.

These issues will hopefully be addressed in future work.
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